Day55 - P234+CBAM改进在VisDrone2019上的表现
yolov5s/m和yolov8s,删除P5检测头+添加P2检测头,在backbone的C3/C2f模块后添加一层CBAM,在VisDrone2019上训练200epochs
Yolov5s-p234-cbam
Parameters: 8.626M
Class Precision Recall mAP50 mAP50-95 all 0.526 0.423 0.436 0.266 pedestrian 0.572 0.48 0.514 0.248 people 0.57 0.376 0.414 0.17 bicycle 0.298 0.19 0.164 0.0778 car 0.721 0.823 0.839 0.603 van 0.536 0.478 0.488 0.347 truck 0.507 0.351 0.368 0.252 tricycle 0.45 0.298 0.307 0.176 awning-tricycle 0.327 0.194 0.163 0.108 bus 0.705 0.542 0.589 0.441 motor 0.57 0.499 0.51 0.239 Yolov5m-p234-cbam
Parameters: 23.546M
Class Precision Recall mAP50 mAP50-95 all 0.562 0.449 0.467 0.286 pedestrian 0.615 0.493 0.542 0.266 people 0.593 0.394 0.438 0.185 bicycle 0.336 0.214 0.19 0.0897 car 0.764 0.824 0.85 0.619 van 0.566 0.483 0.505 0.368 truck 0.603 0.407 0.426 0.293 tricycle 0.498 0.35 0.348 0.201 awning-tricycle 0.338 0.211 0.192 0.121 bus 0.707 0.582 0.628 0.457 motor 0.595 0.531 0.547 0.264 Yolov8s-p234-cbam
Parameters: 10.564M
Class Precision Recall mAP50 mAP50-95 all 0.543 0.429 0.446 0.272 pedestrian 0.597 0.474 0.521 0.252 people 0.577 0.384 0.426 0.179 bicycle 0.305 0.204 0.169 0.0792 car 0.747 0.819 0.842 0.611 van 0.573 0.474 0.493 0.356 truck 0.548 0.363 0.378 0.256 tricycle 0.439 0.315 0.305 0.177 awning-tricycle 0.373 0.207 0.184 0.121 bus 0.682 0.55 0.617 0.444 motor 0.587 0.502 0.524 0.248
本文由作者按照 CC BY 4.0 进行授权