文章

Day54 - CBAM+NWD改进在FLIR上的表现

yolov5s/m和yolov8s在backbone的C3/C2f模块后添加一层CBAM,使用NWD损失函数,在FLIR上训练200epochs

  • Yolov5s-cbam-nwd

    Parameters: 9.502M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6810.5150.5650.343
    person0.8570.6610.7870.459
    bike0.5930.5120.5070.314
    car0.8790.7750.8590.62
    motor0.8170.6480.7530.388
    bus0.7830.5310.6780.477
    truck0.4410.3910.2770.189
    light0.7810.4720.5870.275
    other vehicle0.30.1270.07390.0256
  • Yolov5m-cbam-nwd

    Parameters: 25.896M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6310.550.5770.363
    person0.8430.7160.810.49
    bike0.5730.5710.550.361
    car0.8570.8130.8780.647
    motor0.7090.6180.7330.399
    bus0.7480.5870.6790.493
    truck0.3540.4350.2730.182
    light0.7960.5470.6290.303
    other vehicle0.1710.1110.06520.0316
  • Yolov8s-cbam-nwd

    Parameters: 11.516M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6760.5070.5580.34
    person0.8650.6760.80.47
    bike0.6510.5240.5380.338
    car0.890.7790.8670.63
    motor0.8240.5960.6690.356
    bus0.8070.5420.6830.471
    truck0.4050.3910.2550.158
    light0.790.4830.5750.264
    other vehicle0.1750.06350.07720.0359
本文由作者按照 CC BY 4.0 进行授权