Day53 - CBAM+NWD改进在VisDrone上的表现
yolov5s/m和yolov8s在backbone的C3/C2f模块后添加一层CBAM,使用NWD损失函数,在VisDrone2019上训练200epochs
Yolov5s-cbam-nwd
Parameters: 9.502M
Class Precision Recall mAP50 mAP50-95 all 0.502 0.385 0.388 0.227 pedestrian 0.531 0.388 0.415 0.185 people 0.559 0.266 0.316 0.118 bicycle 0.271 0.158 0.122 0.0484 car 0.719 0.765 0.787 0.554 van 0.53 0.42 0.444 0.306 truck 0.508 0.367 0.357 0.231 tricycle 0.393 0.3 0.274 0.148 awning-tricycle 0.292 0.201 0.146 0.0897 bus 0.683 0.542 0.575 0.399 motor 0.534 0.44 0.443 0.192 Yolov5m-cbam-nwd
Parameters: 25.896M
Class Precision Recall mAP50 mAP50-95 all 0.527 0.412 0.422 0.253 pedestrian 0.554 0.416 0.449 0.208 people 0.574 0.285 0.338 0.129 bicycle 0.285 0.179 0.151 0.0664 car 0.746 0.779 0.805 0.578 van 0.538 0.453 0.474 0.332 truck 0.548 0.387 0.41 0.272 tricycle 0.435 0.343 0.321 0.18 awning-tricycle 0.325 0.205 0.169 0.0981 bus 0.727 0.594 0.63 0.451 motor 0.542 0.476 0.472 0.214 Yolov8s-cbam-nwd
Parameters: 11.516M
Class Precision Recall mAP50 mAP50-95 all 0.506 0.386 0.395 0.232 pedestrian 0.535 0.385 0.418 0.187 people 0.547 0.267 0.32 0.118 bicycle 0.266 0.173 0.132 0.0553 car 0.735 0.765 0.792 0.56 van 0.529 0.445 0.455 0.314 truck 0.521 0.367 0.376 0.242 tricycle 0.402 0.313 0.285 0.151 awning-tricycle 0.315 0.188 0.151 0.0907 bus 0.665 0.514 0.576 0.405 motor 0.543 0.444 0.444 0.193
本文由作者按照 CC BY 4.0 进行授权