Day51 - P234+NWD改进在VisDrone上的表现
yolov5s/m和yolov8s删除P5检测头+添加P2检测头,使用NWD损失函数,在VisDrone上训练200epochs
Yolov5s-p234-nwd
Parameters: 6.273M
Class Precision Recall mAP50 mAP50-95 all 0.538 0.414 0.434 0.257 pedestrian 0.584 0.472 0.511 0.24 people 0.588 0.366 0.412 0.167 bicycle 0.308 0.193 0.17 0.0737 car 0.728 0.816 0.834 0.592 van 0.551 0.462 0.472 0.334 truck 0.502 0.336 0.362 0.236 tricycle 0.478 0.316 0.314 0.173 awning-tricycle 0.335 0.18 0.165 0.105 bus 0.732 0.499 0.583 0.413 motor 0.57 0.5 0.514 0.236 Yolov5m-p234-nwd
Parameters: 17.162M
Class Precision Recall mAP50 mAP50-95 all 0.564 0.445 0.466 0.282 pedestrian 0.633 0.493 0.551 0.265 people 0.6 0.399 0.436 0.18 bicycle 0.326 0.23 0.204 0.0933 car 0.768 0.821 0.843 0.61 van 0.569 0.476 0.495 0.353 truck 0.59 0.38 0.412 0.272 tricycle 0.483 0.355 0.341 0.192 awning-tricycle 0.351 0.201 0.18 0.111 bus 0.716 0.57 0.649 0.482 motor 0.603 0.527 0.544 0.259 Yolov8s-p234-nwd
Parameters: 7.781M
Class Precision Recall mAP50 mAP50-95 all 0.525 0.425 0.438 0.261 pedestrian 0.58 0.478 0.519 0.246 people 0.569 0.373 0.413 0.169 bicycle 0.296 0.207 0.178 0.0786 car 0.738 0.819 0.837 0.598 van 0.548 0.466 0.48 0.34 truck 0.519 0.343 0.361 0.23 tricycle 0.423 0.303 0.298 0.166 awning-tricycle 0.326 0.186 0.168 0.109 bus 0.691 0.543 0.597 0.431 motor 0.559 0.529 0.525 0.242
本文由作者按照 CC BY 4.0 进行授权