文章

Day51 - P234+NWD改进在VisDrone上的表现

yolov5s/m和yolov8s删除P5检测头+添加P2检测头,使用NWD损失函数,在VisDrone上训练200epochs

  • Yolov5s-p234-nwd

    Parameters: 6.273M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5380.4140.4340.257
    pedestrian0.5840.4720.5110.24
    people0.5880.3660.4120.167
    bicycle0.3080.1930.170.0737
    car0.7280.8160.8340.592
    van0.5510.4620.4720.334
    truck0.5020.3360.3620.236
    tricycle0.4780.3160.3140.173
    awning-tricycle0.3350.180.1650.105
    bus0.7320.4990.5830.413
    motor0.570.50.5140.236
  • Yolov5m-p234-nwd

    Parameters: 17.162M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5640.4450.4660.282
    pedestrian0.6330.4930.5510.265
    people0.60.3990.4360.18
    bicycle0.3260.230.2040.0933
    car0.7680.8210.8430.61
    van0.5690.4760.4950.353
    truck0.590.380.4120.272
    tricycle0.4830.3550.3410.192
    awning-tricycle0.3510.2010.180.111
    bus0.7160.570.6490.482
    motor0.6030.5270.5440.259
  • Yolov8s-p234-nwd

    Parameters: 7.781M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5250.4250.4380.261
    pedestrian0.580.4780.5190.246
    people0.5690.3730.4130.169
    bicycle0.2960.2070.1780.0786
    car0.7380.8190.8370.598
    van0.5480.4660.480.34
    truck0.5190.3430.3610.23
    tricycle0.4230.3030.2980.166
    awning-tricycle0.3260.1860.1680.109
    bus0.6910.5430.5970.431
    motor0.5590.5290.5250.242
本文由作者按照 CC BY 4.0 进行授权