文章

Day50 - Backbone中C3/C2f后添加一层ECA在FLIR上的表现

yolov5n/s/m和yolov8n/s仅在backbone的C3/C2f模块后添加一层ECA,在FLIR上训练200epochs

  • Yolov5n-eca

    Parameters: 2.655M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5560.4490.4740.283
    person0.7930.6420.7330.405
    bike0.4560.4180.4070.256
    car0.8250.7480.830.581
    motor0.670.5640.5760.291
    bus0.750.5250.6080.417
    truck0.2370.2830.1450.0893
    light0.7140.410.4730.216
    other vehicle000.01910.00739
  • Yolov5s-eca

    Parameters: 9.153M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6020.5310.5470.335
    person0.8080.6920.7770.455
    bike0.5010.5470.5130.322
    car0.8260.7960.8580.618
    motor0.740.6550.70.358
    bus0.740.540.6570.457
    truck0.3330.4570.2690.191
    light0.7310.4830.5570.26
    other vehicle0.1390.07940.04670.018
  • Yolov5m-eca

    Parameters: 25.111M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6210.5570.5740.364
    person0.8080.7370.8110.5
    bike0.5970.5410.5260.34
    car0.8310.8350.8840.654
    motor0.6420.6180.7320.407
    bus0.7950.5640.6870.505
    truck0.3060.4570.2530.169
    light0.7680.5480.6210.305
    other vehicle0.2240.1590.07740.0344
  • Yolov8n-eca

    Parameters: 3.157M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5930.4570.4940.297
    person0.8270.6210.7460.422
    bike0.4910.4470.4430.268
    car0.850.7490.8380.592
    motor0.620.5820.6070.307
    bus0.8520.5080.6330.448
    truck0.2080.2630.1410.0937
    light0.7450.4180.5150.23
    other vehicle0.1520.06350.03220.0128
  • Yolov8s-eca

    Parameters: 11.167M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6610.5080.560.342
    person0.8460.6850.790.471
    bike0.6150.5530.5350.332
    car0.8530.8010.8690.634
    motor0.7210.5640.6970.374
    bus0.7740.5370.6890.479
    truck0.3880.3480.2280.13
    light0.7750.4820.5740.273
    other vehicle0.3180.09520.09770.0435
本文由作者按照 CC BY 4.0 进行授权