文章

Day49 - Backbone中C3/C2f后添加一层CA在FLIR上的表现

yolov5n/s/m和yolov8n/s仅在backbone的C3/C2f模块后添加一层CA,在FLIR上训练200epochs

  • Yolov5n-ca

    Parameters: 2.667M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6280.4430.4940.292
    person0.8360.6070.7420.411
    bike0.5370.4180.410.245
    car0.8530.7320.8330.587
    motor0.8040.5210.6230.302
    bus0.8010.4750.6190.417
    truck0.330.3910.2180.141
    light0.7480.370.4790.224
    other vehicle0.1160.03170.02910.0122
  • Yolov5s-ca

    Parameters: 9.191M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6280.5130.5570.338
    person0.8360.6780.7850.465
    bike0.5870.5120.5210.321
    car0.8590.7880.8650.627
    motor0.7480.60.7240.38
    bus0.7460.5080.6550.439
    truck0.390.4780.2860.184
    light0.7770.5090.5830.277
    other vehicle0.07650.03170.03610.0122
  • Yolov5m-ca

    Parameters: 25.191M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6940.5270.5750.363
    person0.8840.6590.8080.49
    bike0.6210.5590.5610.35
    car0.9010.7880.8810.648
    motor0.8110.5820.6740.388
    bus0.8070.5310.6720.481
    truck0.3980.4570.2880.198
    light0.8420.5020.6160.298
    other vehicle0.2920.1430.09750.0472
  • Yolov8n-ca

    Parameters: 3.170M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5830.4810.5050.3
    person0.7860.6650.7490.422
    bike0.4710.4410.4350.263
    car0.8110.7720.8410.595
    motor0.7670.6360.6710.332
    bus0.7770.4880.6150.427
    truck0.2320.370.2130.131
    light0.670.430.480.22
    other vehicle0.1520.04830.03820.0116
  • Yolov8s-ca

    Parameters: 11.204M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6540.5150.5570.345
    person0.8520.6650.7880.472
    bike0.6420.5180.5280.32
    car0.8690.7910.870.631
    motor0.860.6360.7230.394
    bus0.7310.5310.6710.472
    truck0.3820.4440.2550.173
    light0.7670.4780.5680.271
    other vehicle0.1310.06010.05120.0233
本文由作者按照 CC BY 4.0 进行授权