文章

Day48 - Backbone中C3/C2f后添加一层SEAttention在FLIR上的表现

yolov5n/s/m和yolov8n/s仅在backbone的C3/C2f模块后添加一层SE,在FLIR上训练200epochs

  • Yolov5n-se

    Parameters: 2.666M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5870.4380.4830.29
    person0.8310.6080.7410.415
    bike0.4950.4470.4150.258
    car0.8360.7440.830.585
    motor0.7490.5820.6530.35
    bus0.7960.4190.5780.396
    truck0.2220.2990.1460.0889
    light0.7170.3920.4810.219
    other vehicle0.04610.01590.02120.00766
  • Yolov5s-se

    Parameters: 9.197M

    ClassPrecisionRecallmAP50mAP50-95
    all0.650.4970.5370.331
    person0.8580.6540.7840.463
    bike0.5670.5120.5170.318
    car0.8740.7740.8650.624
    motor0.860.5820.6720.362
    bus0.7840.5270.6540.466
    truck0.3540.4130.2090.138
    light0.790.4640.5660.269
    other vehicle0.110.04760.02780.00848
  • Yolov5m-se

    Parameters: 25.209M

    ClassPrecisionRecallmAP50mAP50-95
    all0.670.5210.5740.364
    person0.8930.6660.8110.497
    bike0.6440.5650.550.355
    car0.90.7810.8820.65
    motor0.7570.6550.7110.394
    bus0.8260.4780.6640.485
    truck0.3710.4780.2910.194
    light0.8250.4990.6230.304
    other vehicle0.1420.04760.06170.0322
  • Yolov8n-se

    Parameters: 3.168M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6190.4490.4880.292
    person0.830.610.7440.42
    bike0.4790.4350.3990.24
    car0.8480.7520.8430.598
    motor0.830.5820.6320.319
    bus0.8350.4410.620.432
    truck0.2560.3210.1690.101
    light0.7150.3890.4670.211
    other vehicle0.1580.06350.02970.0154
  • Yolov8s-se

    Parameters: 11.210M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6240.5050.5440.338
    person0.8460.6750.7920.471
    bike0.5430.5410.5140.328
    car0.870.7850.870.635
    motor0.7360.60.6780.385
    bus0.7860.5130.6670.465
    truck0.2680.3480.2020.136
    light0.7670.4790.560.26
    other vehicle0.1750.09520.06830.0237
本文由作者按照 CC BY 4.0 进行授权