文章

Day43 - Backbone中C3/C2f后添加一层GAM在FLIR上的表现

yolov5n/s/m和yolov8n/s仅在backbone的C3/C2f模块后添加一层GAM,在FLIR上训练200epochs

  • Yolov5n-gam

    Parameters: 3.234M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5990.4730.4920.296
    person0.8050.6240.7380.413
    bike0.4330.4940.4270.26
    car0.8030.7660.8380.592
    motor0.8040.5450.620.316
    bus0.7170.4920.6070.443
    truck0.290.370.1760.111
    light0.7030.4160.4820.219
    other vehicle0.2360.07940.04630.0154
  • Yolov5s-gam

    Parameters: 11.465M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6350.5210.5460.341
    person0.8370.6860.7960.47
    bike0.5930.5120.5270.343
    car0.8610.7950.8710.635
    motor0.7670.5640.6640.362
    bus0.7630.4970.650.466
    truck0.3090.5430.2280.155
    light0.7680.4760.5740.274
    other vehicle0.1820.09520.06080.0263
  • Yolov5m-gam

    Parameters: 30.308M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6850.5160.5870.372
    person0.8970.6540.8130.502
    bike0.630.5290.5630.361
    car0.9050.7780.8840.655
    motor0.7860.6730.7810.438
    bus0.8280.480.6620.481
    truck0.3930.4780.3020.203
    light0.8370.480.6090.298
    other vehicle0.2050.05740.08090.0348
  • Yolov8n-gam

    Parameters: 3.736M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5640.4680.4940.3
    person0.790.6460.7440.416
    bike0.4810.4650.4450.268
    car0.8080.7730.8420.596
    motor0.6740.5820.6350.361
    bus0.7220.4780.60.423
    truck0.2090.3260.1450.0917
    light0.6750.4130.470.211
    other vehicle0.150.06350.06940.033
  • Yolov8s-gam

    Parameters: 13.478M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6350.5160.5440.339
    person0.8480.6840.7970.473
    bike0.5750.5530.5150.32
    car0.8510.80.8690.632
    motor0.7570.60.6830.378
    bus0.7710.5250.6420.462
    truck0.280.3910.2070.134
    light0.7520.4960.5720.273
    other vehicle0.2440.07940.06610.0381
本文由作者按照 CC BY 4.0 进行授权