文章

Day42 - Neck中C3/C2f后添加一层GAM在FLIR上的表现

yolov5n/s/m和yolov8n/s仅在neck的C3/C2f模块后添加一层GAM,在FLIR上训练200epochs

  • Yolov5n-gam

    Parameters: 3.336M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5660.4650.4870.286
    person0.8070.620.7320.406
    bike0.4620.4350.4280.245
    car0.8160.760.8330.581
    motor0.60.60.6160.305
    bus0.7810.4770.6210.422
    truck0.2330.3910.1580.1
    light0.7170.3840.4650.213
    other vehicle0.1170.05240.04290.0163
  • Yolov5s-gam

    Parameters: 11.873M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6260.4960.5340.333
    person0.8520.6620.7850.464
    bike0.6280.5180.5060.319
    car0.8620.7850.8630.625
    motor0.680.60.6510.367
    bus0.7980.4860.6420.452
    truck0.3390.4350.2340.149
    light0.7780.4490.5550.272
    other vehicle0.07310.03170.040.0137
  • Yolov5m-gam

    Parameters: 31.226M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6980.5230.580.367
    person0.8830.6680.8060.489
    bike0.6480.5310.5450.356
    car0.9060.7820.8780.644
    motor0.7540.5820.6650.352
    bus0.8720.520.6740.487
    truck0.410.5220.3880.278
    light0.8390.4850.6050.292
    other vehicle0.2740.09520.08240.0403
  • Yolov8n-gam

    Parameters: 3.838M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6210.4610.5010.3
    person0.8420.6130.7490.422
    bike0.4630.4880.4640.276
    car0.8520.7530.8380.595
    motor0.8470.5640.6190.313
    bus0.8050.4390.6010.412
    truck0.2860.4350.2220.15
    light0.7440.3530.4670.215
    other vehicle0.1250.04760.04760.0185
  • Yolov8s-gam

    Parameters: 13.886M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6470.4980.5450.338
    person0.860.6530.7850.467
    bike0.5150.5120.4920.323
    car0.8830.7790.8660.63
    motor0.8160.5660.6920.382
    bus0.7980.5360.6630.461
    truck0.3610.4350.2420.153
    light0.8190.4580.5770.273
    other vehicle0.1230.04760.04180.0186
本文由作者按照 CC BY 4.0 进行授权