文章

Day38 - Neck中C3/C2f后添加一层CBAM在FLIR上的表现

yolov5n/s/m和yolov8n/s仅在neck的C3/C2f模块后添加一层CBAM,在FLIR上训练200epochs

  • Yolov5n-cbam

    Parameters: 2.758M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5710.4720.4880.288
    person0.7920.6420.7410.412
    bike0.4710.4410.4120.256
    car0.80.7630.8320.585
    motor0.6760.6180.6530.313
    bus0.7830.4840.610.402
    truck0.2340.370.1740.116
    light0.6640.3930.4550.207
    other vehicle0.1510.0650.02950.0106
  • Yolov5s-cbam

    Parameters: 9.564M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6510.4890.5410.333
    person0.8740.6340.7830.463
    bike0.5620.4940.4750.29
    car0.8860.7660.8640.624
    motor0.8270.6070.7150.359
    bus0.7810.480.6360.461
    truck0.3150.370.2320.164
    light0.7960.4780.5730.275
    other vehicle0.1680.07940.05020.0269
  • Yolov5m-cbam

    Parameters: 26.035M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6960.50.5690.362
    person0.8990.6470.8060.5
    bike0.6990.5350.5530.362
    car0.9060.780.8820.652
    motor0.8280.60.6940.401
    bus0.8520.480.6470.47
    truck0.3610.4130.2970.195
    light0.8440.4830.6220.298
    other vehicle0.1790.06350.05160.0218
  • Yolov8n-cbam

    Parameters: 3.260M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5840.4440.4860.294
    person0.8180.6250.7480.427
    bike0.4340.4590.4210.259
    car0.8450.7560.8420.596
    motor0.7590.5450.6160.313
    bus0.7830.4190.590.421
    truck0.2070.3260.1420.089
    light0.7710.4030.5130.237
    other vehicle0.05430.01590.01990.00801
  • Yolov8s-cbam

    Parameters: 11.577M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6460.5130.5580.346
    person0.8520.6650.7860.472
    bike0.5770.5530.5430.353
    car0.8680.790.870.631
    motor0.7870.6180.710.38
    bus0.80.5370.6680.476
    truck0.3440.4130.2590.162
    light0.7660.4620.550.259
    other vehicle0.1760.06770.07730.0293
本文由作者按照 CC BY 4.0 进行授权