文章

Day37 - Backbone中C3/C2f后添加一层CBAM在FLIR上的表现

yolov5n/s/m和yolov8n/s仅在backbone的C3/C2f模块后添加一层CBAM,在FLIR上训练200epochs

  • Yolov5n-cbam

    Parameters: 2.742M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5780.4630.4940.297
    person0.8040.6320.7370.411
    bike0.5290.4290.4330.261
    car0.8220.7630.8370.589
    motor0.6960.5640.6320.336
    bus0.7690.5080.6340.427
    truck0.2430.3780.1620.116
    light0.7150.4180.4970.227
    other vehicle0.04830.01590.01830.00953
  • Yolov5s-cbam

    Parameters: 9.502M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6520.5030.5560.342
    person0.8620.6490.7870.465
    bike0.5660.5120.5180.327
    car0.8780.7790.8680.629
    motor0.8870.5730.7320.384
    bus0.8090.520.6670.465
    truck0.3630.4780.2410.171
    light0.7720.4810.5740.272
    other vehicle0.07890.03170.06330.0255
  • Yolov5m-cbam

    Parameters: 25.896M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6880.5250.5910.372
    person0.8780.670.810.5
    bike0.6530.5180.5480.356
    car0.8970.790.8820.653
    motor0.7970.6550.7760.408
    bus0.8380.5140.6870.5
    truck0.4330.4810.330.22
    light0.8460.4930.6310.303
    other vehicle0.160.07940.06270.0346
  • Yolov8n-cbam

    Parameters: 3.245M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5970.4620.4990.303
    person0.8080.6260.7430.421
    bike0.5690.4470.4540.269
    car0.8310.7520.8370.591
    motor0.8440.5640.6420.354
    bus0.7320.520.6250.437
    truck0.2670.370.1820.114
    light0.6940.3990.4680.221
    other vehicle0.03490.01590.0390.0152
  • Yolov8s-cbam

    Parameters: 19.245M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6780.4960.5730.36
    person0.8910.630.7910.472
    bike0.6070.4880.5440.329
    car0.9070.7510.8650.628
    motor0.7570.6360.7310.407
    bus0.8160.5220.6730.496
    truck0.4350.4350.3380.243
    light0.8110.4430.5630.269
    other vehicle0.2010.06350.07450.0395
本文由作者按照 CC BY 4.0 进行授权