Day34 - NWD在FLIR上的表现
yolov5n/s/m和yolov8n/s仅使用NWD损失函数,在FLIR上训练200epochs
Yolov5n-nwd
Parameters: 2.655M
Class Precision Recall mAP50 mAP50-95 all 0.599 0.464 0.491 0.286 person 0.804 0.629 0.735 0.402 bike 0.467 0.447 0.423 0.252 car 0.832 0.748 0.825 0.574 motor 0.799 0.578 0.658 0.333 bus 0.817 0.45 0.607 0.406 truck 0.273 0.413 0.164 0.0902 light 0.72 0.418 0.491 0.219 other vehicle 0.0771 0.0317 0.025 0.00881 Yolov5s-nwd
Parameters: 9.153M
Class Precision Recall mAP50 mAP50-95 all 0.651 0.507 0.555 0.338 person 0.86 0.651 0.781 0.453 bike 0.556 0.518 0.502 0.296 car 0.876 0.778 0.863 0.622 motor 0.745 0.582 0.701 0.384 bus 0.794 0.536 0.648 0.447 truck 0.378 0.435 0.294 0.193 light 0.802 0.458 0.566 0.268 other vehicle 0.198 0.0952 0.0824 0.0423 Yolov5m-nwd
Parameters: 25.111M
Class Precision Recall mAP50 mAP50-95 all 0.681 0.517 0.579 0.364 person 0.884 0.657 0.801 0.486 bike 0.626 0.541 0.554 0.356 car 0.906 0.786 0.874 0.642 motor 0.797 0.636 0.736 0.386 bus 0.814 0.503 0.69 0.501 truck 0.377 0.457 0.3 0.213 light 0.852 0.494 0.623 0.298 other vehicle 0.19 0.0635 0.0583 0.0295 Yolov8n-nwd
Parameters: 3.157M
Class Precision Recall mAP50 mAP50-95 all 0.612 0.428 0.49 0.292 person 0.848 0.613 0.742 0.411 bike 0.563 0.447 0.44 0.262 car 0.864 0.738 0.833 0.584 motor 0.758 0.545 0.643 0.33 bus 0.752 0.458 0.612 0.431 truck 0.226 0.216 0.135 0.0924 light 0.802 0.374 0.495 0.219 other vehicle 0.0843 0.0317 0.0241 0.0103 Yolov8s-nwd
Parameters: 11.167M
Class Precision Recall mAP50 mAP50-95 all 0.633 0.501 0.543 0.335 person 0.849 0.669 0.784 0.457 bike 0.567 0.541 0.514 0.312 car 0.878 0.779 0.863 0.621 motor 0.748 0.6 0.671 0.373 bus 0.771 0.559 0.66 0.47 truck 0.269 0.304 0.208 0.134 light 0.8 0.474 0.58 0.27 other vehicle 0.181 0.0794 0.0673 0.0416
本文由作者按照 CC BY 4.0 进行授权