文章

Day31 - P2改进在FLIR上的表现

yolov5n/s/m和yolov8n/s仅添加p2检测头,在FLIR上训练200epochs

  • Yolov5n-p2

    Parameters: 2.838M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6130.4670.5110.306
    person0.8380.6620.7940.459
    bike0.5250.4410.4350.256
    car0.8570.7730.8650.618
    motor0.8010.5450.6040.303
    bus0.7480.4690.6290.43
    truck0.2370.3040.140.0806
    light0.7580.4920.5780.279
    other vehicle0.1350.04760.04010.0238
  • Yolov5s-p2

    Parameters: 8.816M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6370.5250.5720.358
    person0.8730.6970.8360.507
    bike0.6120.5060.5060.32
    car0.8760.8090.8910.654
    motor0.6240.6040.6580.348
    bus0.8530.5030.6920.487
    truck0.2610.4570.2620.183
    light0.8230.5440.6590.329
    other vehicle0.1740.07940.07130.0327
  • Yolov5m-p2

    Parameters: 23.863M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6830.5390.5960.384
    person0.9010.6940.8520.53
    bike0.6280.5660.5510.36
    car0.9070.8050.9010.669
    motor0.7650.6510.7130.406
    bus0.7840.520.6790.493
    truck0.3340.4130.2990.218
    light0.8360.5660.6960.35
    other vehicle0.3060.09520.07730.0482
  • Yolov8n-p2

    Parameters: 3.411M

    ClassPrecisionRecallmAP50mAP50-95
    all0.5920.4750.5280.32
    person0.8090.6930.8050.471
    bike0.4860.4670.4550.279
    car0.8410.7960.8720.627
    motor0.7530.5450.670.331
    bus0.7480.4470.6250.449
    truck0.190.3260.1560.101
    light0.7320.4790.5730.275
    other vehicle0.1790.04760.06720.0254
  • Yolov8s-p2

    Parameters: 11.110M

    ClassPrecisionRecallmAP50mAP50-95
    all0.6580.5170.5740.357
    person0.8730.70.8380.512
    bike0.5120.5290.5080.332
    car0.870.8120.8910.656
    motor0.8490.5820.7020.369
    bus0.8020.5080.680.483
    truck0.3340.3480.2350.142
    light0.7830.5320.6260.311
    other vehicle0.240.1270.1090.0546
本文由作者按照 CC BY 4.0 进行授权