Day30 - Baseline在FLIR上的表现
以yolov5n/s/m和yolov8n/s作为baseline,在FLIR上训练200epochs
Yolov5n
Parameters: 2.655M
Class Precision Recall mAP50 mAP50-95 all 0.604 0.445 0.487 0.293 person 0.832 0.605 0.74 0.415 bike 0.517 0.435 0.411 0.247 car 0.855 0.742 0.835 0.588 motor 0.757 0.566 0.634 0.339 bus 0.771 0.475 0.611 0.425 truck 0.241 0.326 0.152 0.102 light 0.764 0.373 0.484 0.22 other vehicle 0.0947 0.0416 0.031 0.01 Yolov5s
Parameters: 9.153M
Class Precision Recall mAP50 mAP50-95 all 0.637 0.495 0.553 0.34 person 0.866 0.65 0.788 0.467 bike 0.605 0.518 0.497 0.312 car 0.88 0.777 0.867 0.628 motor 0.793 0.618 0.755 0.379 bus 0.772 0.453 0.639 0.461 truck 0.307 0.435 0.27 0.183 light 0.797 0.459 0.573 0.272 other vehicle 0.0798 0.0476 0.0369 0.0169 Yolov5m
Parameters: 25.111M
Class Precision Recall mAP50 mAP50-95 all 0.676 0.54 0.579 0.371 person 0.871 0.677 0.808 0.498 bike 0.597 0.565 0.55 0.359 car 0.887 0.798 0.881 0.651 motor 0.771 0.655 0.731 0.418 bus 0.812 0.553 0.691 0.509 truck 0.407 0.457 0.283 0.191 light 0.804 0.503 0.607 0.303 other vehicle 0.261 0.111 0.0816 0.0423 Yolov8n
Parameters: 3.157M
Class Precision Recall mAP50 mAP50-95 all 0.6 0.433 0.48 0.288 person 0.835 0.614 0.743 0.418 bike 0.498 0.412 0.404 0.246 car 0.859 0.747 0.838 0.595 motor 0.796 0.569 0.61 0.314 bus 0.78 0.455 0.605 0.413 truck 0.195 0.239 0.134 0.0827 light 0.723 0.381 0.473 0.221 other vehicle 0.111 0.0476 0.0367 0.0171 Yolov8s
Parameters: 11.167M
Class Precision Recall mAP50 mAP50-95 all 0.626 0.522 0.55 0.347 person 0.834 0.681 0.79 0.474 bike 0.53 0.559 0.51 0.313 car 0.841 0.808 0.87 0.633 motor 0.82 0.618 0.70 0.399 bus 0.768 0.535 0.66 0.477 truck 0.278 0.413 0.23 0.162 light 0.765 0.468 0.57 0.272 other vehicle 0.173 0.0952 0.087 0.0469
本文由作者按照 CC BY 4.0 进行授权